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Quasi-two-dimensional turbulence in shallow fluid layers: The role of bottom friction
and fluid layer depth

H. J. H. Clercx, G. J. F. van Heijst, and M. L. Zoeteweij
Fluid Dynamics Laboratory, Department of Physics, Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
~Received 19 December 2002; published 13 June 2003!

The role of bottom friction and the fluid layer depth in numerical simulations and experiments of freely
decaying quasi-two-dimensional turbulence in shallow fluid layers has been investigated. In particular, the
power-law behavior of the compensated kinetic energyE0(t)5E(t)e2lt, with E(t) the total kinetic energy of
the flow andl the bottom-drag coefficient, and the compensated enstrophyV0(t)5V(t)e2lt, with V(t) the
total enstrophy of the flow, have been studied. We also report on the scaling exponents of the ratioV(t)/E(t),
which is considered as a measure of the characteristic length scale in the flow, for different values ofl. The
numerical simulations on square bounded domains with no-slip boundaries revealed bottom-friction indepen-
dent power-law exponents forE0(t), V0(t), andV(t)/E(t). By applying a discrete wavelet packet transform
technique to the numerical data, we have been able to compute the power-law exponents of the average number
density of vorticesr(t), the average vortex radiusa(t), the mean vortex separationr (t), and the averaged
normalized vorticity extremumvext(t)/AE(t). These decay exponents proved to be independent of the bottom
friction as well. In the experiments we have varied the fluid layer depth, and it was found that the decay
exponents ofE0(t), V0(t), V(t)/E(t), andvext(t)/AE(t) are virtually independent of the fluid layer depth.
The experimental data forr(t) and a(t) are less conclusive; power-law exponents obtained for small fluid
layer depths agree with those from previously reported experiments, but significantly larger power-law expo-
nents are found for experiments with larger fluid layer depths.

DOI: 10.1103/PhysRevE.67.066303 PACS number~s!: 47.32.Cc, 47.27.Eq
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I. INTRODUCTION

During the last decade, several experimental studies w
reported on the behavior of quasi-two-dimensional flows
electromagnetically forced shallow fluid layers@1–7#. In
many of these experiments, it is assumed that the t
dimensionality ~2D! hypothesis for such flows holds~see
Refs.@1,3–6#!, and that bottom friction can be accounted f
with the relatively simple Rayleigh friction model. The va
lidity of these assumptions has been investigated numeric
by Satijnet al. @8# for an evolving axisymmetric monopola
vortex in a shallow fluid layer. For the more complex case
decaying quasi-2D turbulence, Paretet al. @9# claimed, based
on experimental measurement of relaxation times for dec
ing monopolar and dipolar structures~in thin density-
stratified fluid layers!, that the flow could indeed be consid
ered as two-dimensional after a short initial transient s
~where the flow is dominated by three-dimensional resid
flows!. A numerical study of decaying 2D turbulence~with
stress-free boundaries! by Jüttner et al. @10# yielded similar
conclusions. Although these studies~Refs.@8–10#! provided
important insights, any extrapolation to decaying quasi-
turbulence in shallow fluid layers is in our opinion prematu
due to the far more complex flow behavior. It was therefo
felt necessary to investigate the influence of the bottom f
tion and the fluid layer depth on decaying quasi-2D turb
lence in more detail.

We proceed from two different starting points. With n
merical simulations of decaying 2D turbulence on a boun
square domain with Rayleigh damping, which represents
bottom friction, we have investigated the power-law exp
1063-651X/2003/67~6!/066303~9!/$20.00 67 0663
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nents of both the compensated kinetic energyE0(t)
5E(t)e2lt, with E(t) the total kinetic energy of the flow an
l the bottom-drag coefficient, and the compensated ens
phy V0(t)5V(t)e2lt, with V(t) the total enstrophy of the
flow. The decay exponent of the ratioV(t)/E(t), represent-
ing an estimate of the characteristic length scale in the fl
has also been computed, and the temporal evolution of
herent vortices in decaying 2D turbulence with bottom fr
tion has been investigated. An important aspect is the
merical validation of the so-called compensated vorticity a
velocity fields as proposed by Hansenet al. @6#. Additionally,
the influence of the fluid depth has been investigated by m
suringE0(t), V0(t), V(t)/E(t), and the temporal evolution
of the vortices in a series of experiments.

In Sec. II, we summarize the theory of flows in shallo
fluid layers. Subsequently, we will discuss the power-l
exponents obtained from direct numerical simulations~DNS!
in Sec. III. The experimental data are presented in Sec.
We will conclude in Sec. V with a short discussion of th
results.

II. THEORY OF 2D TURBULENCE IN SHALLOW
FLUID LAYERS

The effect of bottom friction is usually parametrized by
linear friction term2lv in the 2D Navier Stokes equation
with l the so-called bottom-drag coefficient. Cartesian co
dinates in a frame of reference are denoted byx andy, and
v5(u,v) represents the horizontal fluid velocity in the sha
low fluid layer. The bottom-drag coefficient can be express
in terms of the kinematic viscosityn and the fluid layer depth
H: l5n(p/2H)2. The dimensionless 2D Navier-Stoke
equation takes the following form:
©2003 The American Physical Society03-1
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]v

]t
1~v•“ !v52“p1

1

Re
¹2v2

1

Rel
v. ~1!

The horizontal Reynolds number is defined as Re5UL/n,
with U and L being characteristic horizontal velocity an
length scales of the flow, and represents the usual Reyn
number for purely 2D flows. The vertical Reynolds numb
is defined as Rel5U/lL. The parametrization of the bottom
friction by 2lv turns out to be adequate for an axisymmet
vortex in a shallow fluid layer with a sufficiently small hor
zontal and vertical Reynolds number: Re&2500 and Rel
&25 @8#. Note that the estimates of these dimensionl
numbers depend on the somewhat arbitrary choice of
criterion to distinguish between a more or less thr
dimensional and a quasi-two-dimensional flow~see Ref.@8#
for details!.

The relative importance of bottom friction with respect
horizontal diffusion can easily be understood from the ra
Rel /Re5(2H/pL)2. Thus, Rel!Re for flows in extremely
shallow fluids~with H!L). The dissipative term 1/Relv will
generally dominate over lateral diffusion 1/Re¹2v, and the
decay of the flow is completely governed by the bottom fr
tion. Choosing the experimental or numerical parameter
this regime, i.e.,H!L, might have severe consequences
decaying 2D turbulent flows, because due to bottom frict
any nonlinearity is rapidly depleted and the inverse ene
cascade@11# is virtually halted; the flow dynamics will be
frozen by bottom friction before the larger structures are a
to emerge. The final number of coherent structures m
therefore be substantially larger than one when bottom f
tion is present. In the absence of bottom friction, usually o
or two vortices are observed in the quasistationary final s
of decaying 2D turbulence@12,13#.

The total kinetic energy of the two-dimensional flow
defined asE5 1

2 *Dv2dA, with dA an infinitesimal area ele
ment of the total flow domainD. In a similar way, the total
enstrophy of the flow is defined asV5 1

2 *Dv2dA, with v
5]v/]x2]u/]y the vertical vorticity of the flow. A relation
between the energy decay rate and the enstrophy is e
derived from Eq.~1!,

dE~ t !

dt
52

2

Re
V~ t !2

2

Rel
E~ t !. ~2!

By introducing the following dimensionless expressions
the energy and the enstrophy:

E~ t !5E0~ t !e22t/Rel ~3!

V~ t !5V0~ t !e22t/Rel, ~4!

with E0(t) andV0(t) independent of the bottom friction, Eq
~2! can be rewritten as

dE0~ t !

dt
52

2

Re
V0~ t !. ~5!

Apparently,E0(t) andV0(t) can be considered as an ener
and an enstrophy, respectively, of a 2D flow without botto
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friction and are therefore denoted as the compensa
kinetic energy and the compensated enstrophy of the fl
respectively. Moreover, it indicates that we mig
introduce the following relations for the velocity and th
vorticity: v(x,y,t)5v0(x,y,t)e2t/Rel and v(x,y,t)
5v0(x,y,t)e2t/Rel. Note thatx, y, and t are all dimension-
less.

The ratioV(t)/E(t) provides an estimate of the averag
length scalel in the flow via AV(t)/E(t)}1/l . Using Eqs.
~3! and ~4!, we see directly that

V~ t !

E~ t !
5

V0~ t !

E0~ t !
, ~6!

and l should therefore be independent of the bottom frictio
Although the above analysis suggests independenc

E0(t), V0(t), andV(t)/E(t) from the bottom friction, and
seems to result in a straightforward simplification of the d
scription of decaying 2D turbulence in shallow fluid layer
we would like to emphasize that thorough numerical or e
perimental justification of this approach is sparse.

Keeping Eqs.~3! and~4! in mind, we can further simplify
the 2D Navier-Stokes equation with bottom friction. For th
purpose~and also for numerical purposes later on!, we intro-
duce the following vorticity equation with bottom friction:

]v

]t
1~v•“ !v5

1

Re
¹2v2

1

Rel
v. ~7!

We now adapt the procedure, introduced by Hansenet al.
@6#, to simplify the vorticity equation. Substitution o
v(x,y,t)5v0(x,y,t)e2t/Rel andv(x,y,t)5v0(x,y,t)e2t/Rel

in Eq. ~7!, subsequently multiplying byet/Rel, and finally,
introducing a new dimensionless time,

t* 5Rel~12e2t/Rel! ~8!

~note that lim
l→0

t* 5t, and t* 't if t&Rel), we arrive at

the following modified vorticity equation:

]v0

]t*
1~v0•“ !v05

1

Re*
¹2v0 . ~9!

The price to be paid for this transformation is the appeara
of a time-dependent Reynolds number Re* 5Ree2t/Rel ~or a
time-dependent viscosityn* 5n et/Rel).

Summarizing, we can state that the approach introdu
by Hansenet al. @6# implies that two-dimensional flows with
bottom friction can be interpreted as purely 2D flows witho
bottom friction, but with a time-dependent horizont
Reynolds number, which can evolve for a finite timet*
(<Rel) only. The validity and limitations of this approac
will be investigated based on a comparison of numerical d
from several decaying 2D turbulence runs with different v
ues of the bottom friction.
3-2
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III. DNS OF 2D TURBULENCE WITH RAYLEIGH
DAMPING

The objective of the numerical part of this study is
show the bottom-friction independence ofE0(t), V0(t), and
V(t)/E(t). Additionally, it will be shown that the tempora
evolution of coherent vortices appears to be independen
the bottom friction as well.

The numerical simulations were carried out with a 2
Chebyshev pseudospectral code~for details see Ref.@14#!,
and the same setup as was used for the vortex statistics s
reported by Clercx and Nielsen@15#; an array of 10310
vortices of approximately equal strength and size. Their
sitions and strengths were all perturbed slightly in order
break the symmetry of the flow. The vorticity distribution
similar to the initial vorticity field in the experiments~see
Sec. IV!. Obviously, the main difference with the numeric
experiments in Ref.@15# is the Rayleigh damping term
which has been included in the presently discussed sim
tions. The horizontal~integral-scale! Reynolds number Re
5UW/n, with U the rms velocity of the initial flow field and
W the half width of the computational domain, is varied b
tween 1000 and 5000. Time has been made dimensionles
W/U and vorticity byU/W. The initial microscale Reynolds
number is defined as~see also Ref.@7#!: Remicr52Re/v0,
with v0 the ~dimensionless! initial rms vorticity. In our nu-
merical experimentsv0538.060.5, thus corresponding
with Remicr between 53 and 263. This range of microsc
Reynolds numbers is comparable with the Reynolds num
in the experiments by Danilovet al. @7#. Several values of
the vertical Reynolds number Rel ~10, 20, 25, 33.3, 50, 100
and`) have been used. We display our data as function
the dimensionless timet, which is defined ast5v0t/N
'4t, with t the dimensionless time andN2 the number of
vortices initially present (N510 in the present simulations!.

TABLE I. The number of simulations per combination of R
and Rel .

Rel5 ` 100 50 33.3 25 20 10

Re51000 4 4 4 2 4 2 2
Re52000 4 4 4 2 4 2 2
Re55000 2 1 1 1 1 1 1
06630
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The characteristic~initial! dimensionless eddy turnover tim
is then represented byt'1.

As a first step, we have carried out a series of simulati
to investigate the bottom-friction independence of the ra
V(t)/E(t). Basically, the data represent averages of ru
with similar initial conditions~see Ref.@15#!, except for Re
55000 due to limited computer resources~for an overview
of the runs, see Table I!. In Fig. 1, a log-log plot of the
evolution of V(t)/E(t) is shown for simulations with Re
51000, 2000, and 5000. The algebraic decay rate is foun
be independent of the bottom friction up tot'50:
V(t)/E(t)}t2a with a51.1560.10,1.0060.10, and 0.80
60.10 for Re51000 ~a!, 2000 ~b!, and 5000~c!, respec-
tively. Beyond t'50, any relation between the differen
curves seems nonexistent. Approximately 10% of the ini
kinetic energy of the flow is left for the runs without botto
friction, and even less for the runs with bottom frictio
Therefore, we might assume that the flow evolution is larg
dominated by lateral diffusion fort*50. Nevertheless, it is
possible to assign an estimate of the decay rate:a50.6
60.1.

In Fig. 2, a log-log plot of the evolution ofV(t* )/E(t* )
is shown for simulations with Re51000 ~a!, 2000 ~b!, and
5000 ~c!. ~Note thatt* '4t* .) The curves shown in Figs
2~a!–2~c! reveal thatV(t* )/E(t* ) and the associated deca
exponents become heavily dependent on the bottom fric
for t*50. Note that t't* for t&4Rel , thus similar
power-law exponents should be found in this regime
V(t)/E(t) and V(t* )/E(t* ). These data support our im
pression that application of the rescaling introduced
Hansenet al. @6# @see Eq.~9!# also does not provide addi
tional information fort*50. In this regime, lateral diffusion
is dominating the flow evolution, and in our opinion n
power-law behavior should be assigned to the numer
data.

The compensated enstrophyV0(t)}t2b is shown in Fig.
3 for Re51000 ~a!, 2000 ~b!, and 5000~c!. These plots
clearly show the bottom-friction independence of the co
pensated enstrophy. The power-law exponents obtained f
the present runs areb51.6060.10, 1.3560.10, and 1.05
60.10, respectively. Applying the rescaling proposed
Hansenet al. @6# again introduces different curves~for suffi-
ciently large t* ) for different values of Rel @see Fig. 4
FIG. 1. Time evolution of the ratio
V(t)/E(t) for Re51000 ~a!, Re52000 ~b!, and
Re55000 ~c!. RelP$10,20,25,33.3,50,100,`%.
3-3
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FIG. 2. Time evolution of the ratio
V(t* )/E(t* ) for Re51000 ~a!, Re52000 ~b!,
and Re55000 ~c!. RelP$10,20,25,33.3,
50,100,̀ %.
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where we have plottedV0(t* ) for Re55000].
Similar conclusions can be drawn for the decay rate of

compensated energyE0(t) and for the decay rate of th
compensated palinstrophyP0(t) @the palinstrophy is a mea
sure of the vorticity gradients in the flow:P
5 1

2 *D(“v)2dA]. The power-law exponents are summariz
in Table II for different values of the Reynolds number t
gether with the results of the simulations by Clercx a
Nielsen@15# ~DNS of decaying 2D turbulence without bo
tom friction with Re55000, 10 000, and 20 000!. The decay
rates proved to be independent of the bottom-drag coeffic
l.

The computation of the average number density of vo
cesr(t), the average vortex radiusa(t), the mean vortex
separationr (t), and the averaged normalized extreme v
ticity value vext(t)/AE(t) is based on a discrete wavel
packet transform~WPT! technique@16–18#. In order to con-
sider a structure as a vortex, the following conditions sho
be satisfied. The aspect ratio of the long and short ares o
~nearly! ellipsoidal patch should be smaller than'2. The
~absolute! value of the vorticity extremum should always b
larger than 20% of the absolute value of the vorticity ext
mum of the strongest vortex. The computation of the vor
strength and the vortex radius is performed by taking i
account the 20% of the strongest vortices detected by
WPT algorithm only@except in the final stage when the num
ber of vortices becomes too small, i.e.,r(t)&10]. We have
applied the WPT technique to the vorticity data obtain
from the runs with Re52000 and 5000. The average numb
06630
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density of vortices is shown in Fig. 5, and the averaged n
malized extreme vorticity value is shown in Fig. 6. Althoug
considerable spreading of the data occurs~especially for Re
55000 where only one run for each finite value of Rel was
available!, power-law behavior could be observed which
largely independent of the bottom friction.

For both Re52000 and Re55000, two different power-
law regimes can be identified forr(t). The simulations with
Re52000 revealed thatr(t)}t21.1 for t&50 and r(t)
}t20.5 for t*50 @see Fig. 5~a!#. The data obtained for the
runs with Re55000 revealed:r(t)}t20.8 for t&60 and
r(t)}t20.5 for t*60 @see Fig. 5~b!#. Applying the rescaling
proposed by Hansenet al. @6#, it appears that the first power
law regime remains largely unaffected. The second pow
law regime disappears and the curves become stro
bottom-friction dependent@see Figs. 5~c! and 5~d!#. As ob-
served before for the compensated energy and enstroph
additional information is gained by applying the rescal
time t* ~Eq. 8! to the vortex density.

The averaged normalized extreme vorticity val
vext(t)/AE(t)}t2b with b50.4560.10 for Re52000
@whent&60, but less steep fort*60 with b'0.27, see Fig.
6~a!# andb50.3560.05 for Re55000@for t&300, see Fig.
6~b!#. Figure 6~c! showsvext(t* )/AE(t* ) for the case Re
55000. The power-law behavior is clearly lost fort*40.
Similar graphs can be made for the average vortex rad
a(t) and the mean vortex separationr (t). These graphs also
indicate that the power-law exponents of botha(t) andr (t)
are independent of the bottom friction. In Table III we ha
d
FIG. 3. Time evolution of the compensate
enstrophyV0(t) for Re51000 ~a!, Re52000,
~b! and Re55000 ~c!. RelP$10,20,25,33.3,
50,100,̀ %.
3-4
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QUASI-TWO-DIMENSIONAL TURBULENCE IN SHALLOW . . . PHYSICAL REVIEW E67, 066303 ~2003!
summarized the power-law exponents as obtained from
numerical data in the regime 1&t&50.

IV. EXPERIMENTS OF QUASI-2D TURBULENCE
WITH VARYING FLUID DEPTHS

A. Experimental setup

The experiments were carried out in an electromagn
cally forced thin fluid layer in a square plexi-glass contain
A similar setup was used before by several investigat
e.g., Dolzhanskiiet al. @2#, Danilov et al. @7#, and Tabeling
and co-workers@1,3–5#. A schematic drawing of the setup
shown in Fig. 7. The dimensions of the container are
35234 cm ~length3width3 height!. The container is filled
with a solution of salt~NaCl, 12% Brix! up to a certain fluid
depthH ~varying from 4 to 12 mm in different experiments!.
Below the black polyvinyl chloride bottom, permanent ma
nets were placed in a chess-board-like 10310 pattern~the
nearest neighbor distance of the magnets is 5 cm!, with al-
ternating poles. The magnets, 25 mm in diameter and 5
thick, produce a magnetic field with a maximum of 1.09
The magnetic field decays over a typical length of 4 mm.
two facing side-walls, platinum electrodes are positioned
the fluid @see Fig. 7~b!# which are connected to a curre
supply. In the present experiments, a single current puls

TABLE II. Power-law exponents forE0(t), V0(t), P0(t), and
V(t)/E(t) for different integral-scale Reynolds numbers. T
power-law exponents for Re510 000 and 20 000 are from Clerc
and Nielsen@12#.

Re E0(t) V0(t) P0(t) V(t)/E(t)

1000 20.760.1 21.6060.1 22.360.1 21.1060.1
2000 20.460.1 21.3560.1 21.960.1 21.0060.1
5000 20.360.1 21.0560.1 21.560.2 20.8060.1
10 000 20.8560.1 20.7060.1
20 000 20.8060.1 20.6560.1

FIG. 4. Time evolution of the compensated enstrophyV0(t) for
Re55000. RelP$10,20,25,33.3,50,100,`%.
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chosen, which can be set in amplitudeI f(A) and duration
Dt f(s). Typical values areI f52 A andDt f55 s.

By putting a potential over the electrodes, a current d
sity J@A/m2# will flow through the fluid. This current density
J is proportional to the ion concentrationn, the charge of the
ionsq, and the velocity of the ionsv i . The currentI f equals
the current densityJ times the area of the plane perpendic
lar to the direction of the current. For the total current, th
implies thatI f5JA'5nqv iHL, with H andL the fluid depth
and the width of the current conducting fluid layer, respe
tively. With a fixed currentI f , the ion velocityv i will be
inversely proportional to the fluid depthH, and as a conse
quence the Lorentz forceFL5qvd3B, with vd the drift ve-
locity of the ions andB the magnetic field vector, will also
scale asH21. For the initial ~horizontal! Reynolds number
and the energy of the flow, this gives Re;U;1/H and E
;U2;1/H2. In order to compare experiments for differe
fluid depths easily, the velocity should be chosen such
the Reynolds number and energy are comparable for all
periments. To achieve this, the currentI f should scale lin-
early with the fluid depthH.

FIG. 5. The time evolution of the average vortex densityr for
Re52000 ~a!,~c! and Re55000 ~b!,~d!. Filled circles, Rel5`;
open squares, Rel550; open diamonds, Rel520; filled triangles,
Rel510.
3-5
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FIG. 6. Time evolution of the ratio
vext(t)/AE(t) for Re52000 ~a! and Re55000
~b!, and of the ratiovext(t* )/AE(t* ) for Re
55000~c!. Filled circles, Rel5`; open squares,
Rel550; open diamonds, Rel520; filled tri-
angles, Rel510.
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For flow visualization and the measurement of seve
flow quantities, such as the kinetic energyE and the enstro-
phy V, small white tracer particles of 250mm in size were
seeded on the free surface of the fluid layer. The relativ
large size and the shape of the tracer particles will resu
slightly nonideal behavior. In particular, the particles do n
follow the flow exactly. However, the error associated w
the nonideal behavior falls within the accuracy of the co
putation of the velocity vectors. The experiments were
corded with a high-resolution digital gray-level camera a
frame rate of 30 Hz. The flow was illuminated with a xen
lamp or with a laser ~QuantaRay GCR 150, 30 H
Q-switched Nd:YAG~yttrium aluminum garnet! pulse laser
with 200 mJ at 532 nm!, in order to make the particle
clearly visible for the camera. The images taken by the ca
era were used for high-resolution particle velocimetry cal
lations @19#, which determine the positions and velocities
the particles in the recorded images.

The experimental parametersH, l, the integral-scale Rey
nolds number Re5UL/n, and the microscale Reynolds num
ber Remicr have been summarized in Table IV. The latt
Reynolds number is defined as Remicr52Re/vmax(t50),
with vmax(t50) the peak vorticity of the vortices in th
initial flow field at the moment the forcing stopped (t50).
Note that the microscale Reynolds number for the exp
ments is defined in a slightly different way compared w
the definition used for the numerical simulations, which
based on the initial~dimensionless! rms vorticity v0. How-
ever,vmax(t50) is of the same order as the initial rms vo
ticity.

B. Temporal scaling of the energy, the enstrophy,
and the vortex density

Several experiments with a very shallow fluid layer ha
been conducted, and we have indeed observed the expo

TABLE III. Power-law exponents forr(t), a(t), r (t), and
vext(t)/AE(t) for different integral-scale Reynolds numbers
<t<50). The power-law exponents for Re510 000 are taken from
Clercx and Nielsen@12#.

Re r(t) a(t) r (t) wext(t)/AE(t)

2000 21.1060.1 0.3560.05 0.5560.1 20.4560.05
5000 20.8060.1 0.2760.05 0.4560.1 20.3560.05
10 000 20.7560.1 0.2560.05 0.4060.1 20.3060.05
06630
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tial decay of the total kinetic energy of the flow. In Fig. 8, th
kinetic energy, normalized with the energyE(t50) ~just af-
ter forcing!, obtained from an experiment withH54 mm is
plotted as a function of time. The estimated slope provid
the following value for the bottom-drag coefficient:l
50.1460.02 s21. This value is in a good agreement wit
the theoretically predicted Rayleigh friction for a shallo
fluid layer with a depth of 4.060.2 mm: l5p2n/4H2

50.1660.02 s21. In order to compare with a few previousl
reported measurements~with different fluid depths!, it is
more convenient to introduce the quantityk5lH2/(2n)
@2,7#. The theoretical value isk5p2/8'1.23 ~independent
of the fluid depth!, and our experimentally obtained value
k51.160.2. Danilov et al. @7# and Dolzhanskiiet al. @2#
conducted similar experiments and foundk51.760.2, con-
siderably larger than found in our experiments.

The compensated kinetic energy, i.e.,E0(t)5E(t)e2lt

~see Eq. 3!, shows an algebraic decay:E0(t)}t2a with a
.0. In a similar way, an algebraic expression for the ens
phy decay is found:V0(t)}t2b (b.0). The evolution of
the compensated energy and enstrophy is shown in Fig. 9
an experiment in a shallow fluid layer with a depth ofH
510 mm. For the energy a power-law exponent ofa
50.4560.05 fits the experimental data@see Fig. 9~a!#. The
enstrophy shows a much larger decay rate, resulting i
power-law exponentb50.960.1 in the range 3 s<t<20 s
@see Fig. 9~b!#. After t520 s, the decay rate decreas
slightly. For the same experiment, we have measured
power-law exponent for the ratioV(t)/E(t)}t2g and found
g50.560.1.

For several other fluid depths (H>8 mm), similar decay
rates have been found for the compensated energyE0(t) and
enstrophyV0(t). For the experiments with fluid depths of
and 6 mm, bothE0(t) andV0(t) could not be fitted with an
algebraic power law with sufficient accuracy. The unc
tainty in the measured fluid depth resulted in several poss
exponential correction functions, which gave completely d

FIG. 7. Schematic representation~a! and cross section~b! of the
experimental setup.
3-6
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ferent slopes in the algebraic fits. The power-law expone
for E0(t), V0(t), andV(t)/E(t), found in different experi-
ments withH>8 mm @and H>6 mm for V(t)/E(t)], are
summarized in Table V. For this range of fluid layer dept
we could clearly separate the power-law dependence f
the exponential decay due to bottom friction. The calcula
power-law exponents are based on one experiment for e
fluid layer depth, except forH510 mm where they represen
an average over data from two experiments. The power-
exponents in Table V seem to be approximately independ
of the fluid layer depth.

It is remarkable that the experimentally obtained pow
law exponents, and to a lesser extent those obtained from
numerical simulations, do not satisfy Eq.~5!. It is clear from
Table V thatbÞa11 andgÞ1 as one would expect from
Eq. ~5!. The numerically obtained power-law exponents
E0(t), V0(t), andV(t)/E(t) ~see Table II! disagree with
the relationsb5a11 andg51 for the runs conducted with
high Reynolds number. This phenomenon has been obse
in previous studies and has been addressed numericall
Chasnov @20# for decaying homogeneous 2D turbulen
~without bottom friction and with periodic boundary cond
tions!. It has been suggested by Chasnov that the discrep
might be related with the absence of a pure power law for
decay of the kinetic energy and the enstrophy of the fl

TABLE IV. Summary of the experimental parametersH ~the
fluid depth!, l ~the bottom friction!, Re~the integral-scale Reynold
number!, and Remicr ~the microscale Reynolds number!.

H ~mm! l (s21) Re Remicr

4 0.15 1500 750
6 0.07 2000 570
8 0.038 3000 1000

10 0.025 2250 1500
12 0.017 2750 920

FIG. 8. Decay of the total kinetic energy for a fluid layer of
mm. The dashed line indicates the exponential behavior with a fi
value ofl50.14 s21.
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The larger discrepancy between the experimentally obtai
values ofa, b, andg is most likely attributed to the addi
tional three-dimensional effects.

Our experimental data on the decay exponent of the c
pensated enstrophy seem to differ slightly with those
ported by Danilovet al. @7#. They found different power-law
exponents depending on the applied currents to initialize
flow, and the power-law behavior found by them isV0(t)
}t20.8. However, their quasi-2D turbulence experimen
were conducted in fluid layers with a depth varying from
mm to 6 mm~and different horizontal dimensions!. Our data
suggest a trend to smaller power-law exponents for sm
fluid layer depths, but we were not able to obtain reliab
decay exponents forH<6 mm. ForH>8 mm, our experi-
mentally measured power-law exponents are somew
smaller than the predictions by Bartello and Warn (b51.2)
@21# and by Chasnov (b'1.2 for the relevant range of Rey
nolds numbers! @20#.

The temporal evolution of coherent vortices could only
determined for flows in fluid layers withH>6 mm @see Fig.
10, where we have displayedr(t) and a(t) for H510 mm
andH512 mm]. Unfortunately, no reliable power-law expo
nents could be determined forH54 mm. The experimen-
tally obtained average number density of vortices, the av
age vortex radius, and the normalized extremum vortic
show the following algebraic decay behavior forH

TABLE V. Overview of the power-law exponentsa, b, andg
for E0(t)}t2a, V0(t)}t2b, andV(t)/E(t)}t2g, respectively, ob-
tained from experiments with varying fluid layer depthH ~in mm!.

E0(t) V0(t) V(t)/E(t)
H a b g

6 0.460.1
8 0.560.1 0.960.1 0.560.1

10 0.560.1 0.960.1 0.560.1
12 0.460.1 1.060.1 0.560.1d

FIG. 9. Evolution of the compensated kinetic energyE0(t) ~a!
and the compensated enstrophyV0(t) ~b! calculated from experi-
mental data (H510 mm).
3-7
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<8 mm: r(t)}t20.4560.1, a(t)}t0.1760.05, and
vext(t)/AE(t)}t20.2160.05 for t*3 s. These experimenta
power laws are in a close agreement with the data from s
lar experiments reported by Cardosoet al. @3#; they found
r(t)}t20.4460.1, a(t)}t0.2260.03, and vext(t)/AE(t)
}t20.2260.06. For experiments in fluid layers with thicknes
H>10 mm, we have foundr(t)}t20.760.1, a(t)}t0.3560.05,
and vext(t)/AE(t)}t20.2260.05 ~see Fig. 10!. In particular,
the absolute value of the decay exponent forr(t) anda(t) is
significantly larger than those reported for smaller fluid lay
depths.

Despite some dependence on the fluid layer depth,
ticularly for r(t) anda(t), the experimental data agree wi
the numerically computed power-law exponents in the s
ond power-law regime where the flow is already stron
dominated by viscous effects@see Figs. 5 and 6 forr(t) and
vext(t)/AE(t), respectively#. The initial-stage power laws
as found in the simulations might not be captured in
experiments. This is most likely due to the faster dissipat
of kinetic energy of the flow in the experiments, due to
combination of bottom friction and three-dimensional r
sidual flows, and will result in a smaller effective horizont
Reynolds number.

V. DISCUSSION AND CONCLUSION

The numerical and experimental studies of the role
bottom friction and fluid layer depth on decaying quasi-tw
dimensional turbulence enable several interesting obse
tions. The numerical simulations showed that the evolut
of vortex statistics of decaying 2D turbulence with botto
friction can be described by bottom-friction independe
power laws~provided that compensated velocity and vort
ity fields are used!. The rescaling of time (t→t* ) proposed
by Hansenet al. @6# does not modify power-law exponen

FIG. 10. The time evolution of the average vortex densityr(t)
~a! and the average vortex radiusa(t) ~b! for experiments with fluid
layer thicknessH510 mm ~filled circles! and H512 mm ~filled
triangles!. The offset between the data obtained forH510 mm and
H512 mm is most likely due to the higher microscale Reyno
number forH510 mm ~see Table IV!.
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for t&4Rel ~the same power laws are necessarily foun!,
and for t*4Rel any clear power-law behavior is absen
even if the rescaled timet* is introduced. In the latter re
gime, the computed data show a strong bottom-friction
pendence and are strongly dominated by lateral diffusi
Another indication that lateral diffusion is important in th
regimet*4Rel is the absence of freezing of the flow dy
namics in virtually all numerical runs. The freezing of th
flow dynamics can be understood when the rescaling pro
dure by Hansenet al. @6# is used. Applying the rescaled tim
t* implies the assumption of a finite decay time available
the flow: t* <4Rel . A major consequence should be th
ceasing of the vortex merging process. This has not b
observed in the present numerical simulations, except for
run with Re55000 and Rel510. These data show tha
r(t)'6 and remains fixed for quite a long time, see F
5~b!. In our opinion, this means that one cannot distingu
between the effects of lateral diffusion and Rayleigh dam
ing, at least for the range of Reynolds numbers considere
the present numerical study. Summarizing, we conclude
one aspect of the proposed rescaling procedure by Ha
et al. @6# is very effective; the introduction of the compen
sated velocityv05velt and the compensated vorticityv0
5velt. The other aspect, the introduction of the resca
time t* , appears to be rather ineffective for the prese
range of Reynolds numbers.

The experiments showed that the temporal evolution
coherent vortices and the power-law regimes of integ
quantities likeV(t)/E(t) are relatively unaffected by the
fluid layer depth forH&12 mm, with possibly an exception
for r(t) and a(t) for H>10 mm. It should, however, be
mentioned that no reliable power-law exponents could
obtained forH<4 mm. The apparent independence of the
quantities from the fluid layer depth indicates that resid
three-dimensional flows are relatively unimportant for t
dynamics of decaying quasi-2D turbulence in shallow flu
layers. However, it seems to contribute to a faster dissipa
and a smaller effective Reynolds number.

Assuming vanishing viscosity, and keepingl finite
~which impliesH}An), Hansenet al. @6# argued that decay
ing 2D turbulence with bottom friction can be described
the Euler equations, viz.Dv/Dt* 50, with the constraint
that only a finite decay time is available for the flow (t*
<Rel). Proceeding from this point, the temporal evolutio
of coherent vortices in decaying 2D turbulence@22,23#
could, in principle, be validated experimentally. Tabelin
et al. @1#, Cardosoet al. @3#, and Hansenet al. @6# tried to
validate the vortex statistics approach with experiments
shallow fluid layers, but their results seem inconclusive.
our opinion, any attempt to validate the scaling theory
Carnevaleet al. @22# ~a theory applicable to inviscid flows
only! with experiments in shallow fluid layers is somewh
ambitious. The range of horizontal Reynolds numbers~based
on the average vortex size! accessible in these experimen
has an upper bound of'2500. Increasing the Reynold
number further inevitably induces strong three-dimensio
residual flows. Additionally, the present numerical investig
tion indicated that application of the rescaling as discus

s
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above requires substantially higher Reynolds numbers
@5000, see also Ref.@15#!.

Although we have been able to show that the numeric
obtained power-law exponents are bottom-friction indep
dent, and that the experimentally obtained power-law ex
nents are independent of the fluid layer thickness, it co
also be observed that the numerically and experiment
obtained power-law exponents differ considerably. Mo
over, the experimental power-law exponents ofr(t), a(t),
and vext(t)/AE(t), measured in experiments withH
<8 mm, agree remarkably well with those reported by C
doso et al. @3#. The difference between the numerical a
experimental data is most likely due to the fact that the ini
decay stage observed in the numerical simulations might
be captured in the experiments. This seems to be suppo
by the power-law exponents found for the second~less steep!
power-law regime in the numerical data that are rather cl
to the experimentally obtained power-law exponen
ys

-
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V(t)/E(t)}t20.660.1, r(t)}t20.560.1, and vext(t)/AE(t)
}t20.2760.05.
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